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SUMMARY

The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is
commonly done on a spatial basis, that is, hypocentres. However, this selection approach may
include data that are undesired, for example, by mixing events that are caused by different
stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase
of FM data in the past decades, objective data-driven data selection is feasible, allowing more
refined FM catalogues that avoid these issues and provide data weights for the STI routines.
We present the application of angular classification with expectation-maximization (ACE) as
a tool for data selection. ACE identifies clusters of FM without a priori information. The
identified clusters can be used for the classification of the style-of-faulting and as weights of
the FM data. We demonstrate that ACE effectively selects data that can be associated with a
single stress tensor. Two application examples are given for weighted STI from South America.
We use the resulting clusters and weights as a priori information for an STI for these regions
and show that uncertainties of the stress tensor estimates are reduced significantly.

Key words: Inverse Theory; Statistical Methods; Seismicity; tectonics; Kinematics of
crustal; mantle deformation.

1 INTRODUCTION

Understanding Earth’s stress field provides insight into rupture me-
chanics of earthquakes and tectonic deformation processes in gen-
eral. Stress itself cannot be observed directly and thus must be in-
ferred from kinematic deformation. Earthquake focal mechanisms
(FMs) are of key importance to derive deformation within the Earth
and thus allow inference of stress orientations.

Stress tensor inversion (STI) methods have been published since
the 1970s (Carey-Gailhardis & Brunier 1974; Angelier 1979;
Armijo et al. 1982; Rivera & Cisternas 1990). Due to their sig-
nificance for stress tensor inference, several methods have been
proposed to invert for the stress tensor from FM data alone. The
three major routines used today are based on the works of Angelier
(1979), Michael (1984) and Gephart & Forsyth (1984). Maury et al.
(2013) provide a comprehensive overview and comparison of these
methods and summarize their common assumptions:

(1) Slip orientation is parallel to the resolved shear stress ori-
entation on the rupture plane. This assumption is known as the
Wallace—Bott hypothesis (Wallace 1951; Bott 1959).

(2) The medium in which the FM occurred is homogeneous, that
is, the stress is assumed to be constant in the entire volume and all
ruptures are related to a single stress tensor.

(3) Earthquakes are independent from each other. This assump-
tion is linked to the previous assumption insofar, as a major earth-
quake temporarily alters the regional stress tensor. Aftershocks are
therefore not only influenced by the background stress field, but also
by the variation to it from the main shock.

The methods based on Angelier (1979) and Michael (1984) are
based on the L,-norm, that is, least squares (LSQ). The large data
variability in FMs leads Gephart & Forsyth (1984) to use an ;-
norm, that is, least absolute deviation (LAD), to reduce the impact
of outliers. Several advancements have been proposed on the ba-
sis of these three methods, including spatial variations (Hardebeck
& Michael 2006; Maury ef al. 2013; Martinez-Garzon et al. 2016),
identification of slip directions (e.g. Lund & Slunga 1999; Xu 2004;
VavryCuk 2011), inversion independent of nodal plane identification
(Angelier 2002) and uncertainty estimation (Hardebeck & Hauks-
son 2001a).

Though advances have been made in the inversion routines, the
basic aspect of data selection has not been addressed to a larger
extent. The most common approach is to select data from spa-
tial regions. The regional binning can be based on different criteria.
Townend & Zoback (2001) used rectangular zones of different sizes,
while Hardebeck & Michael (2004) defined stripes parallel to ma-
jor fault zones (e.g. the San Andreas fault Hardebeck & Hauksson
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1999). Hardebeck & Hauksson (2001b) also used temporal bin-
ning. This kind of data binning is insofar a deterministic choice as
it implies the same stress tensor for all FMs in a given bin. Data
not following this assumption appear as outliers and enlarge the
uncertainties of the inversion results. Hardebeck & Michael (2004)
demonstrated large variations in stress tensor orientations due to
different binning strategies. In addition to assumption of the con-
stant stress tensor in a given bin, the FM data related to that stress
tensor should be diverse to properly represent displacement asso-
ciated with the given stress tensor (Hardebeck & Michael 2004).
This poses a trade-off in any STI: To only include FM data that
are related to a single stress tensor, the bin should be as small as
possible. However, the same bin must be large enough to contain a
variety of different FM to reduce the bias of the inversion.

Different approaches to the relaxation of the constant stress ten-
sor assumption have been proposed, as spatial variations of the
stress field have been documented even on local scale (Hardebeck
& Hauksson 1999). Michael (1991) superposes several stress ten-
sors in a region; an approach similar to Armijo et al. (1982), where
the data are grouped into different tectonic phases to minimize the
stress ratio. Spatial subdivision has been proposed by Hardebeck &
Michael (2006) by horizontally subdividing the region of interest
into linearly dependent spatial bins. Maury et al. (2013) incorpo-
rated a linear variability of stress with depth.

In recent years, more advanced data selection criteria have been
published. Garcia et al. (2012) introduced a selection framework
for the development of ground motion prediction equations that can
also be applied to data selection for stress modelling. The data-
driven binning technique by Martinez-Garzon et al. (2016) is based
on Voronoi tessellation, which subdivides the region of interest into
irregularly shaped convex subregions. In either case data selection
is deterministic, as a datum is included in the set or not.

In this paper, we present a non-deterministic data selection ap-
proach introducing data weighting. The general concept of data
weighting in STI has already been proposed by Armijo et al. (1982)
by incorporating the uncertainties of the data and the model. Due
to the unknown model uncertainties, the data and model uncertain-
ties are represented by a single ratio. This ratio is treated as a free
parameter resulting in a damped LSQ solution.

The data weights we use are based on angular classification with
expectation-maximization (ACE), a probabilistic FM cluster analy-
sis (Specht et al. 2017). ACE determines the FM cluster parameters
and the number of FM clusters. The algorithm identifies FM clus-
ters for both nodal planes. Clusters can be associated with different
stress tensors (e.g. at a plate interface). Data which cannot be as-
sociated with any cluster are unclassified. The probabilities of each
nodal plane pair (i.e. FM) to belong to a particular stress tensor
can be directly used as weights. Event classification is not directly
dependent on the event’s hypocentre because ACE is based on the
FM angles alone. Therefore, ACE also provides a binning strategy
for data selection independent of the spatial distribution—the most
common approach of data selection in STI.

The down-weighted data from ACE are demonstrated to be out-
liers which have a higher influence on the inversion outcome. If
data originate from a region with several stress tensors, ambiguities
arise when assigning FM to a specific stress tensor. This ambigu-
ity is important and needs to be considered when selecting data to
accommodate the data diversity and reduce inversion bias.

The application of data-driven data selection has become feasible
with the steady increase of FM catalogues over the last decades.
During the pioneering times of STI—when data were scarce and
data picking was out of the question—every available datum was
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used in the inversion. However, with catalogues covering tens of
thousands of FM the data selection in general can be improved as
well as STI.

We briefly review the STI routine of Michael (1984) and its spatial
extension (Hardebeck & Michael 2006) and how data weighting is
incorporated into both models (Section 2). The applicability of data
weighting and its impact on synthetic FM catalogues is shown in
Section 3. In Section 4, we present two applications of the weighted
STI by applying to data from South America.

2 METHODS

In this section, we first briefly review the theoretical framework of
inverse theory which is the basis for all STI routines. We focus on
data leverage in a model and its impact on inversion results and on
how to mitigate the effects of highly self-sensitive data with data
weighting. In Section 2.2, we review the STI routines of Michael
(1984) and Hardebeck & Michael (2006) and how they can be
augmented with data weighting.

2.1 Basics

The common approach to inferring the stress field is to align the
stress tensor, such that, the differences of the observed displacement
(e.g. in the form of FMs) to the modelled displacement are overall
minimized. This formulation can be expressed in its simplest form
by the objective function:

S=Y ld sl 0]
i=1

where s and d are the observed and modelled data, respectively.
The exponent p defines the weighting norm. The inversion routines
by Angelier (1979) and Michael (1984) use p = 2 (LSQ), while
Gephart & Forsyth (1984) use p = 1 (LAD). The data type in the
objective function differs for all routines, and is for generality not
further specified here. The larger the p, the larger the impact of a
large residual (i.e. outlier) on the objective function S and thus the
outcome of the final model.

If p = 2 in eq. (1) then the objective function can also be repre-
sented in matrix notation as

S=(6—d)"(s—ad), (2)

= (s — At)"(s — A¢). (3)

The matrix A is the design matrix containing the independent vari-
ables of the model and the functional form relating the model pa-
rameters t to the data s. Data in s are therefore dependent variables.
While the independent variables are assumed to be free of errors,
the dependent variables are considered erroneous, that is, uncertain.

The objective function in eq. (3) can be generalized by Armijo
et al. (1982), Tarantola (2005) and Menke (2012)

S=(s—At)'Q7'(s — A1), 4)

where the matrix €2 is the data covariance matrix representing data
uncertainties. The general LSQ solution for t is given by :

t=ATQTA)TATQ d. (5)

This relation expresses the model parameters in terms of the data.
In the cases of the stress inversion routines by Angelier (1979)
and Michael (1984), it holds that Q~! =1 (the identity matrix).
This is the ordinary LSQ solution (eq. 3) and implies that all data



2252 S. von Specht et al.

are equally reliable (erroneous). The method by Angelier (1979)
includes a second constraint in eq. (4) (see Xu 2004, for expressing
this in matrix notation), as does the inversion routine of Armijo
et al. (1982). The L;-norm used by Gephart & Forsyth (1984) can
be expressed by reweighting the data in Q! (Hill & Holland 1977;
Holland & Welsch 1977; Street et al. 1988); the data themselves are
treated as in the cases for Angelier (1979) and Michael (1984), that
is, equally reliable. In most cases the true uncertainties of the data
are neither known nor included.

Because the model parameters are derived from all data, it is
reasonable to investigate how the observed data d influence the
outcome of the modelled data s (Cook 1977; Hoaglin & Welsch
1978; Cardinali et al. 2004; Menke 2012). A relation between d and
s results by using eq. (5):

s = At, (6)
= AATQ A TATQ 14, (7)
= Nd. (8)

The matrix N is known under different names [hat matrix (Hoaglin
& Welsch 1978), data resolution matrix (Menke 2012), influence
matrix (Cardinali ef al. 2004)]. The elements of the data resolu-
tion matrix provides factors to express modelled data as a linear
combination of observed data

j=1

The elements of the main diagonal of N are called importance
(Menke 2012), self-influence/self-sensitivity (Cardinali et al. 2004),
or leverage (Hoaglin & Welsch 1978). The leverage expresses how
much each observed datum contributes to its own prediction.

We define a relative leverage based on eq. (9) as the ratio between
the ith leverage and the sum of values of the ith row in the data
resolution matrix:

Nii
NE = (10)

The relative leverage represents by how much more a datum influ-
ences its own prediction compared to the average absolute contri-
bution of the data. If N™ = 1 then the datum’s contribution is on
average, if N/ > 1 the contribution is larger and if N/ < 1 the
contribution is less than the average.

The leverage of the observed data d is not necessarily uniform for
agiven model A, that is, the model itself imposes different weighting
on the data in the independent variables. Consider a simple line fit
with LSQ:

y=ax +b. (11)

Fig. 1 shows two line data sets (15 observations) and their respective
LSQ solutions. Both data sets include one datum with identical error,
but at different locations. The first data set has the error in the first
(leftmost) datum (Fig. 1a; circles), the second in the eighth (central)
datum (Fig. 1b; circles). Despite their high similarities both data
sets yield different inversion results (Figs la and b; solid lines) not
only in the parameters but also in the deviation from the true model.
The reason for this difference is seen in the leverage of the data
with respect to the model (Fig. 1c). In case of the simple line fit,
leverage is lowest at the mean of the independent variables, (¥), and
increases with distance to it. In this example, the outermost data

(a) (d)
y

(b) (e)
y
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Figure 1. Comparison of ordinary LSQ (left-hand column) to weighted
LSQ (WSLQ; right-hand column). In both cases the data originate from a
straight line (black). In total 15 data points are sampled from this straight
line (grey dots). In panels (a) and (d) an ‘error’ is introduced in the first
datum by shifting. In panels (b) and (e) the error is introduced in the eighth
datum. The error is the same in all cases. The ordinary LSQ solution (red) in
panels (a) and (b) differs not only from the truth (black) due to the introduced
error but also both solutions differ from each other. This solution difference
depends on the leverage of the data (c). In case of ordinary LSQ for the
straight line problem leverage follows a parabola, thus the data at both ends
influence the model more than data in the middle. WLSQ can be used to
redistribute leverage. In panels (d) and (e) the weights are represented by
dot size and are the same in both cases. The straight line models in parts (d)
and (e) differ less from each other than in the respective unweighted cases
(a) and (b). While the model (red) in panel (d) is closer to the truth (black)
than in panel (a), the model in panel (e) deviates more from the truth than
in panel (b). Though the leverage of the WLSQ is more balanced (f) than
for unweighted ordinary LSQ (c), that is, each datum has a similar impact
on the model in panels (d) and (e), the decreased leverage at the ends of the
data (d) results in an increased leverage in the data in the middle (e). WLSQ
redistributes leverage and can therefore also be used to balance leverage.

points have more than three times higher influence on the model
parameters than the data at the centre.

One way to mitigate the effects of outlying data and/or the high-
leverage data is to introduce data weighting by using Q! as a weight
matrix, denoted by W:

S=(d—s)"Wd-s) (12)
and
wq 0 - 0
0 wy - 0
w=| . . | (13)
00 - w,



This definition is the weighted LSQ (WLSQ) solution (Menke
2012). A reduction of the impact of outliers in the dependent variable
is achieved by LAD that can be realized with iteratively reweighted
LSQ (Hill & Holland 1977; Holland & Welsch 1977; Street et al.
1988). Effects of leverage can be mitigated by taking the data dis-
tribution into account. For the straight line example from above
one could define a weight function based on the difference x; — x,
that is, the distance of an independent variable to the mean of the
independent variable, for example,

w = () (14)

where b is some user-based scaling factor. This function weights
data close to X highest and less with increasing distance to X.

The effect of such a weighting function on the straight line data
is shown in the right-hand column of Fig. 1. The inversion for the
data with the outlier in the outermost datum (Fig. 1d) deviates less
from the original model than in the unweighted case (Fig. 1a). For
data with the outlier in the central datum the deviation is slightly
increased (Fig. 1a). However, both results of the weighted inversions
are more similar to each other than in the unweighted case, that
is, the leverage is more equally distributed due to the weighting.
A weighting function redistributes leverage and can therefore be
applied to balance the influence of data on the model parameters.

2.2 Stress tensor inversion

One of the most commonly used STI routines has been introduced
by Michael (1984) which is a direct implementation of eq. (5)

s = At, (15)

where s represents the unit slip vectors, matrix A is based on the
normal vectors n and t is the deviatoric stress tensor in vector
notation. This formulation implies that the slip magnitude is uniform
in all directions as slip is represented by unit vectors and the relation
to the 3x 3 stress tensor ¢ is given by:

s=on—(on-n)n. (16)

The difference of the deviatoric stress tensor to the stress tensor o
is the absence of an isotropic stress component (pressure, p). The
deviatoric stress tensor o' is defined by

¥ =g — pl, 17)

where I is the identity matrix and pressure p is

(o) o +on+o3
3 3 '

(18)

thus follows 045’ = 0% + 085", that is, the deviatoric stress tensor
has five independent components only. For convenience the stress

tensor is expressed in Voigt notation

f dev

oy o —p
5] Cfldzev op —p
t= 13 = O'ld_;v = o3 . (19)
Iy ofey 02
ts o35 023

The eigenvectors of t represent the three principal stress orienta-
tions: §; for maximum, S, for intermediate and S; for minimum
principal stress.
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The matrix A; is based on the normal vector n; (subscript i
dropped in the following equation) and follows from eq. (16)

ny— nf + nm% —nznf +n2n§ —n3n% —n3 + ng !
n, — 2n2n% ny — 2n1n§ —2n1nyn3
A= ny — 2n3nf —2n1nyn3 n — 2n1n§ . (20)
—nlng + nm% ny — ng + nzng —n§n3 —n3 + ng
—2nnyns ny — 2n3n§ n, — 2n2n§
The solution of t used by Michael (1984, 1987) is given by eq. (5)
t=(ATA) AT, 1)

and the weighted LSQ from eq. (12) incorporates the weight matrix
W and the solution for t is given by:

t = (ATWA) 'ATWs. (22)

For larger regions it is reasonable to invert for a set of tensors
that are linearly dependent in space. Incorporating the weight matrix
fromeq. (12) into eq. (14) from Hardebeck & Michael (2006) results
in weighted SATSI.

t, = (ATWA + ¢’D'D) 'ATWs5, (23)

where D expresses the linear dependency of the neighboring stress
tensors and ¢ is the dependency strength and t, is the vector of all
stress tensors.

t.=1.1. (24)

The STI routine by Michael (1984) is more applicable to smaller
regions where the stress tensor can be assumed to be constant.
SATSI relaxes this constraint by assuming that the stress tensor is
constant within a subregion only, therefore, allowing STI to larger
regions or tectonically more complex regions.

2.3 Confidence intervals

Hardebeck & Hauksson (2001a) stated that the uncertainty estimates
of STI are not always properly represented. In particular, Hardebeck
& Hauksson (2001a) showed that with increasing data size, the
inversion by Michael (1984) tends to underestimate uncertainties.
Since we focus on improving the underlying inversion routine by
Michael (1984), the uncertainty estimates are compared between
the weighted and unweighted inversions. We estimate uncertainties
for both unweighted and weighted inversions on the same synthetic
data sets. The correct stress tensor is considered to be inside the
x per cent confidence region if its rotation angle to the best-fit stress
tensor is smaller than (100 — x) per cent of the bootstrapped stress
tensor results. The rotation angle between two tensors is the Kagan
angle, the smallest rotation angle between two three-axes systems
(Kagan 1991). Ideally, the amount of correct stress tensors within
the x per cent confidence region should be approximately x per cent.
If the confidence regions are too large or too small, then the amount
of correct stress tensors will be above or below x per cent.

3 DATA

This section examines the distribution of FMs and data with high
leverage according to the model in eq. (15). Based on synthetic
data, we demonstrate the ambiguity of stress tensor identification
for outlier data of a catalogue with FM caused by two different stress
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Figure 2. Cumulative DC rotational Cauchy distributions for different con-
centrations « (grey lines, «; from right to left: 1, 0.4, 0.2, 0.1, 0.07, 0.06,
0.04 and 0.02). The Kagan angle @, the smallest rotation angle between two
FMs, follows this distribution. While rapidly increasing for small @, the
distribution converges slowly to one for larger ®—a typical behaviour of
right-skewed distributions. Data following this distribution, therefore, have
a relatively large number of outliers. The coloured curves represent empir-
ical cumulative distribution functions (ECDF) of FM from GCMT for C
0.06) and the South American west coast (blue, x = 0.07). The ECDFs are
computed after Kagan (2013) for a reverse faulting events with maximum
event distance of 50 km and a maximum event depth of 100 km.

tensors. We then introduce data-driven weighting based on ACE to
reduce the impact of these ambiguous outlier data in the STI.

The data in this study are both real-world data and synthetic
data. Real-world data are provided by the global centroid moment
tensor (GCMT) catalogue (Dziewonski ef al. 1981; Ekstrom et al.
2012). The FM data are declustered (Zaliapin et al. 2008; Zali-
apin & Ben-Zion 2011) to investigate the background stress field
and avoid effects of local stress changes due to major earthquakes.
Declustering is also necessary to allow compatibility to the syn-
thetic data, since these are generated under the assumption of event
independence and a single stress tensor.

3.1 Synthetic catalogue generation

The catalogue with synthetic data is compiled with several boundary
conditions. The basis for the catalogue is a stress tensor with princi-
pal stresses S} > S, > S3. Because we are interested in stress orien-
tations only, neither magnitudes nor the stress ratio R are explicitly
defined and used here. In addition, we assume a Mohr—Coulomb
criterion with an angle of internal friction of ¢y = 30° (Fig. 3a).
The angle of internal friction is related to the coefficient of internal
friction u = tan ¢p¢. According to Byerlee (1978) a common value
in natural materials is © ~ 0.6, which corresponds approximately
to ¢¢ = 30°. In an unfractured homogeneous medium, this scenario
can lead to two possible fractures that are symmetrically aligned
around the principal stress axes with fracture angle « (Fig. 3b). In
case of the Mohr—Coulomb criterion for a newly formed fracture,
the fracture angle @ —as shown in Fig. 3(b)—and the angle of
internal friction are related by (e.g. Zang & Stephansson 2010):
T

a==-7. (25)
Both slip and normal vectors on the two conjugate fracture planes
form the reference events for the generation of the synthetic cata-
logue. The usage of two events (slip vectors) in conjunction with the
Mohr—Coulomb criterion for newly formed fractures (represented

p=tang;

/P(g 2a

(b) E

A\
7

Figure 3. (a) Mohr diagram for the Mohr—Coulomb failure criterion. The
Mohr—Coulomb failure criterion is of form t = C + o, tan ¢, where o,
is the normal stress, t the shear stress, C the cohesion (offset at o, = 0)
and p = tan ¢y the coefficient (angle) of internal friction. Furthermore, « is
the fracture angle, S; the maximum and S3 the minimum principal stress.
For simplicity we do not show the intermediate principal stress S,. Failure
occurs where the Mohr circle reaches the failure envelope. The upper and
lower envelopes relate to the conjugate fault planes as shown in panel (b). (b)
Setting of the reference events for the generation of the synthetic catalogue.
The reference events originate as fractures in a homogenuous, unfractured
medium. We consider a Mohr—Coulomb fracture criterion with a fracture
angle ¢y =30°. As in (a) S} is the maximum and S3 the minimum principal
stress. The intermediate principal stress Sy is perpendicular to the S1—S3-
plane. The fracture planes are described by the normal vector n; and the slip
with d;. Since both fractures are equally likely to occur as a result of the
given stress conditions and friction angle, both are used as reference events
equally. In addition, only with both conjugate fractures are the principal
stress orientations of the stress tensor unambiguously represented by the
slip orientations.

by normal vectors) provides a one-to-one correspondence to the
stress tensor, as a single event may not fully constrain the stress
tensor (McKenzie 1969). However, the magnitude of the slip is
usually unknown and thus the full stress tensor cannot be inferred.
Thus, given the definition of the STI of Michael (1984) in Section
2.2 based on unit slip vectors, the two unit slip vectors—on faults
related to each other by the Mohr—Coulomb fracture criterion—are
sufficient to uniquely constrain the principal stress orientations of
the deviatoric stress tensor t.

We assume the Wallace—Bott hypothesis for the slip orientation,
that is, the slip is parallel to the maximum resolved shear stress.
For the reference events, this results in an orientation of the slip and
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Figure 4. (a) FM data from northern Chile in the strike-rake plane. The four notable clusters represent the two nodal planes for reverse faulting events (positive
rakes) at the plate interface and normal faulting events (negative rakes) within the slab. (b) Synthetic FM data sampled from two DC rotational Cauchy
distributions with different stress tensors: reverse faulting (blue, k = 0.0625) and normal faulting (red, x = 0.125). Although only based on the DC rotational
Cauchy distribution and therefore only on stress orientations and no stress magnitudes, synthetic data yield a high similarity to the real data. The synthetic data
show that each tensor can cause FM with virtually all strikes and rakes. Data following the heavy tailed DC rotational Cauchy distribution have a non-negligible
number of severe outliers. Though the synthetic catalog is based on two reference events, only FM associated with the eastward dipping fault plane are shown.
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Figure 5. Leverage in the STI after Michael (1984) for a synthetic data
set of FM drawn from DC rotational Cauchy distribution of a stress ten-
sor associated with reverse faulting. While leverage is smallest in the two
clusters for either nodal plane, leverage increases with distance to the clus-
ters. The ACE-based weights of this data set are indicated by colour. The
high-leverage data are all down-weighted to an extent that their impact is
negligible in the STI.

normal vectors in the S1—S;3-plane. The null axis (the cross product
of the slip and normal vector) is oriented parallel to S,. No formal
differentiation between the formation of a new fracture and the
reactivation of a pre-existing fault is considered for the catalogue,
that is, any event may represent either case.
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Figure 6. Relative stress tensor prevalence in synthetic FM data similar to
shallow seismicity of the upper 50 km in the Chile data with 80 per cent
reverse and 20 per cent normal faulting with clusters similar to those from
Fig. 4. Though normal faulting events are less common, in the regions
off the cluster centres (pure blue and red regions), data of the extensional
stress tensor may occur as reverse faulting events to such an extent that
stress tensor assignment becomes ambiguous even for reverse faulting (less
colour saturated parts).
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Figure 7. ECDF of the rotation angle between the stress axes of the inver-
sion and the reference values of the synthetic catalogues. In total 20 000
synthetic FM catalogues were sampled from the DC rotational Cauchy distri-
bution and inverted for the stress orientations with and without weights. The
distributions show, that the rotation angles of the unweighted STI (black)
are on average 40 per cent larger than for the weighted STI (red). Though 15
per cent of the data are downweighted such that they are effectively removed
from the data set, the weighted STI results in 40 per cent reduced error in
comparison to the unweighted STI.
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Figure 8. Confidence region appropriateness for both weighted and un-
weighted STI after Hardebeck & Hauksson (2001a). The amount of correct
stress tensors within the x per cent confidence region is plotted as a function
of x. If the confidence regions are appropriate, the amount of correct stress
tensors falls in the grey area. Results from an experiment with perfect con-
fidence regions would have a 95 per cent probability of falling within the
grey zone, which is the 95 per cent confidence interval of the binomial prob-
ability distribution for 2000 trials with an x per cent probability of success
each trial. As reported by Hardebeck & Hauksson (2001a), the uncertainties
of STI after Michael (1984) for larger data sets are underestimated. How-
ever, the unweighted STI (black) underestimates uncertainties more than
the weighted STI (red). This implies that the relative uncertainty reduction
between both STIs of 40 percent shown in Fig. 7 is larger, that is, the
weighting improves results by more than 40 per cent.

To build the catalogue, randomizations are applied to the two
reference events. The randomization is introduced as rotation an-
gles of the FMs. The rotation angle follows a double-couple (DC)
rotational Cauchy distribution (Kagan 1992, 2013) and implies two
assumptions:

(1) Variations in the rupture surfaces of earthquakes, as the sur-
faces may not be completely planar (Kagan & Knopoff 1985; Kagan
1990).

(2) The existence of random stresses due to unavoidable defects
in the medium, preventing rupture surfaces from having the same
orientation (Kagan 1990).

The orientation of FM from a constant background stress ten-
sor and the differences between FM pairs have been extensively
studied and the DC rotational Cauchy distribution has been shown
to adequately describe the distribution of FM orientations (Kagan
1992, 2007, 2013). This distribution is characterized by a single
parameter, the concentration «, which determines the spread of the
distribution. Examples of the DC rotational Cauchy distribution for
different « are shown in Fig. 2. The difference between two FM
stated in NDB-axes (i.e. axes parallel to fault normal vector, the
slip vector and the null vector [orthogonal to the former two]) is
expressed as the Kagan angle.

The randomization of the two reference events is applied in two
steps. For each event in the synthetic catalog, we sample a Kagan
angle from the DC rotational Cauchy distribution. In a second step,
a rotation axis from a uniform distribution is sampled. The NDB-
axes of the reference event are rotated around the rotation axis by
the Kagan angle. For the first half of the catalog, we use the first
reference event, for the second half, the second reference event.

The variability added by the DC rotational Cauchy distribution
is only related to stress in a medium with random defects (Kagan
1992). Effects of FM errors on stress inversions have been investi-
gated by Hardebeck & Hauksson (2001a) and the distribution of FM
errors in terms of the Kagan angle follows a von Mises-Fisher dis-
tribution (Kagan 1992, 2000, 2013). The variability due to random
defects considered in this study is much larger than the variability
introduced by FM uncertainties (Kagan 2000) and FM uncertainties
are not further considered.

Kagan (1992) and the subsequent studies investigated the distri-
bution of rotation angle between pairs of FM without respect to a
reference event. The Cauchy distribution and its derived distribu-
tions belong to the group of stable distributions (Kagan 2000). A
distribution is stable if a linear combination of independent ran-
dom variables with that distribution results in the same distribution,
only with a change of parameters. This property is also known infi-
nite divisibilty. The scale (concentration) of the Cauchy distribution
and its derivates is the linear combination of the individual scales
(concentrations) of the individual Cauchy distributions. Since all
samples in our catalogues are independently drawn from the same
DC rotational Cauchy distribution, the distribution of all pairs fol-
lows again a DC rotational Cauchy distribution. The rotation angle
between some events A and B can be seen as linear combination of
the rotation between A and C, and a rotation between B and C. Event
C is any other event, for example, the reference event. It follows
that for all pairs of FMs the DC rotational Cauchy distribution has
its concentration doubled from the sampling distribution.

The introduction of a random component from the DC rota-
tional Cauchy distribution results in a discrepancy to the Wallace—
Bott hypothesis. However, Lisle (2013) investigated how strictly
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Figure 9. (a) Strike-rake plot of GCMT FMs (both nodal planes) from northern Chile between 1976 and 2017 (26°S—17°S, 75°W—65°W). Clusters were
identified with ACE with colour saturation according to the probability of belonging to that cluster (cyan—plate interface,reverse faulting; red—intraslab,
normal faulting; white—unclassified). The probabilities of the plate interface clusters correspond to the weights used in the weighted STI. The strike axis of the
plot has been shifted by 90° to show all clusters continuously. (b) Map of epicentres of GCMT FMs in panel (a). Colour scheme is identical to part (a). Since
one FM consists of two nodal planes, the colour for the epicentre is based on the average weight of both nodal planes. Most reverse events (cyan) are close to
the trench and are associated with the plate interface, while normal faulting events (red) are further to the east and are associated with the subducted slab.
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Figure 10. STI for northern Chile: (a) unweighted; (b) weighted. Principal stress axes are shown by small circles, uncertainty distributions by coloured areas.
Though only 15 per cent of the data are effectively removed (with near zero weights), uncertainties decrease by a larger margin.

the Wallace—Bott hypothesis should be observed. Lisle (2013) re- 3.2 Data distribution
marked, that the resolved shear stress oriented ~26° off the ori-
entation is at 90 percent of the maximum resolved stress. This
implies a range of 52° over which the shear stress varies only by
10 percent and it has been pointed out that such variability should
be considered in STI. The DC rotational Cauchy distribution is
densest around its mean and has a relatively large positive skew
if « is sufficiently small, that is, most applied rotations are only
a few degrees. With only small rotations applied, the majority of
the events in the synthetic catalogue still closely approximates the
Wallace—Bott hypothesis.

One common assumption for the STI is that all data are caused by the
same stress tensor (Maury et al. 2013). When considering real-world
data, several stress tensors might be present even on smaller scales.
Fig. 4(a) shows FM data from northern Chile and in comparison
synthetic FM data are shown from a stress tensor corresponding
to reverse and normal faulting, respectively. The distribution of
random samples from the DC rotational Cauchy distribution is very
similar to real-world data (e.g. Kagan 1992, 2013). In both cases
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Table 1. Principal stress orientations for northern Chile of the conventional
and weighted STI. Orientations are given as trend (tr.) and plunge (pl.) and
uncertainties (one standard deviation) in italics below.

Conventional Weighted STI
tr. pl. tr. pl.
S1 256.7 19.8 256.1 23.1
4.0 3.6 1.9 12
S> 347.1 1.1 346.3 0.4
3.6 2.6 1.6 15
83 80.4 70.0 77.1 66.9
7.2 3.6 3.3 12

data form dense clusters, but a significant number of outliers is also
present.

Two different stress regimes prevail in Chile (and by extension
most of South American west coast) (e.g. Pardo ez al. 2002). At the
plate boundary interface stresses result mostly in reverse faulting,
while within the subducting slab stresses lead to normal faulting
FM. The transition between the two regimes is continuous in space
and additionally not well-constrained due to FM hypocentre uncer-
tainties.

When sampling from the DC rotational Cauchy distribution from
two different stress tensors, we know which random datum origi-
nates from which stress tensor. This knowledge is unavailable for
real-world data and thus the synthetic data allows insight into its
composition (Fig. 4b). While the dense clusters are dominated by
FM of one stress tensor, the outlying data are composed of FMs of
both stress tensors. This stress tensor overlap in the outlying regions
limits the demand for FM diversity in STI, as a clear stress tensor
assignment for real data is not feasible.

This limitation is even present if FM of one of the two stress
tensors are less frequent. The synthetic catalogue, which is the
basis for Fig. 6, contains 80 per cent reverse and 20 per cent normal
faulting events. Still, regions off the cluster centres (shown by dots
for either nodal plane and tensor type) are equally likely to contain
FM from either tensor. Therefore, a clear distinction of tensors for
those FM can neither be achieved from location alone nor from the
FM in every case. The compiled FM catalogue for the STI will be
most likely polluted by data of different stress tensors—especially
in the outliers. If the presence of a single stress tensor is not given,
it is necessary to downweight those FM that cannot be assigned to
a particular stress tensor. This inadvertently reduces the data size of
the outliers and thus the data variability, which has been shown to
reduce the bias of STI (Hardebeck & Hauksson 2001b). However,
if the outliers originate from another stress tensor, increased data
variability may not result in a decreased bias.

3.3 Data leverage

As introduced in Section 2.1, the leverage states how much an
observed datum contributes to its own prediction. An example of
the leverage of the inversion routine by Michael (1984) is shown
in Fig. 5 for a synthetic data set of FM from a stress tensor with
S| horizontally oriented and S; vertically, resulting predominantly
in reverse faulting. The calculation of the leverage is similar to the
STI routine as bootstrapping is applied to randomly select one nodal
plane as the auxiliary plane. The final leverage is the average of all
leverage calculations of the resampled data.

The distribution of the leverage follows approximately inversely
the data density (Fig. 5). The less data are realized for a certain
FM type, the higher the leverage, that is, leverage increases with

distance to the average FM. Thus, outliers are usually also high-
leverage data.

In the previous section, we have shown that outliers cannot be
assigned to a specific tensor in every case. However, the STI will
give by design those ambiguous data a higher weighting due to
their higher leverage. This contradicts the basic assumption that
less reliable data should be down-weighted instead of up-weighted.
Even if all data arose under a single stress tensor, an outlying datum
will have a larger impact on the outcome then a datum that is close
to the average.

3.4 Data weighting

In Section 2.2, the weight matrix W has been introduced into STI
(eq. 22). The weights we use are derived by ACE (Specht et al.
2017). In Section 2, we demonstrated that the inversion tends to be
more sensitive to outlying data which can be ambiguous in terms of
stress tensor assignment which is crucial for data selection for STI.

The algorithm for ACE requires the same input as STI: FM data.
Expectation-maximization (Dempster et al. 1977) is a widely used
soft (fuzzy) clustering routine. Each FM is represented by two sets
of angles (strike, rake and dip), each for one nodal plane. These
angles are used to estimate probability distributions which describe
the clusters of nodal planes. The functions are also called component
distributions and the full set of the distributions form the mixture
distribution. A cluster of nodal planes may be represented by a
single component or several, depending on the shape complexity
of the cluster. Each FM has a certain probability to belong to each
distribution and thus to each cluster.

The values of the distributions are directly used as weights in
the weight matrix of eqs (22) and (23) (Specht e al. 2017). The
clusters identified by ACE and described by the distributions can
be associated with a stress tensor (e.g. at a plate interface). FM
data not associated with any cluster remain unclassified. Unclassi-
fied data can be associated with data of increased leverage in the
inversion (Fig. 5). If more than one stress tensor is present, the
unclassified data fall into regions where stress tensor assignment
is mixed/ambiguous (Fig. 6). It is only in the presence of several
stress tensors necessary that the weights provided by ACE are used.
If ACE identifies only FM clusters associated with, for example,
reverse faulting at an interface, then the data weighting is not nec-
essary as no ambiguities arise. Accordingly, ACE can also be used
to determine, whether data weighting for STI is required.

3.5 Synthetic data test

We test the performance of both the unweighted and weighted STI
routine on synthetic catalogues with known parameters. The syn-
thetics are based on the DC rotational Cauchy distribution.

The synthetic catalogue is a sample of events drawn from a DC
rotational Cauchy distribution with « = 0.06 and the reference
events are a pure reverse faulting events. The reference nodal planes
have rakes of 90°, the strikes are 90° and 270° and dips are 30°
and 60°. Most of the random events drawn from the DC rotational
Cauchy distribution are distributed closely around the reference
events. To estimate the differences between the unweighted and
weighted STI results, we generated 10 000 synthetic catalogues
each with 800 events. An example of such a catalogue is shown in
Fig. 4(b). For each catalogue both types of STI were performed—
unweighted and weighted—with weights determined by ACE for
each catalogue.



Uncertainty reduction of STI ~ 2259

Table 2. Principal stress orientations for the seven regions of western South America as in Fig. 12 of the unweighted and weighted STI. Orientations are given
as trend (tr.) and plunge (pl.) and uncertainties (one standard deviation) in italics below.

Region Unweighted STI Weighted STI
S S S3 N S S3
tr. pl. tr. pl. tr. pl. tr. pl. tr. pl. tr. pl.
1 260.3 11.4 351.7 6.9 112.1 76.4 259.8 19.7 350.2 1.0 83.1 70.3
18 2.0 1.8 2.6 10.6 2.2 1.0 0.6 0.9 0.7 18 0.6
2 261.4 10.2 352.6 6.5 114.4 71.7 260.9 19.8 351.1 0.5 82.5 70.2
1.6 1.8 17 2.4 10.6 2.0 1.0 0.6 0.9 0.7 1.8 0.6
3 257.5 15.1 350.2 9.8 111.6 71.7 259.0 19.6 349.6 1.6 84.0 70.3
1.8 2.0 1.9 3.0 8.5 2.4 1.2 0.6 1.0 0.8 2.1 0.6
4 263.2 122 353.6 1.7 91.6 77.6 263.5 19.8 173.0 1.2 79.9 70.1
1.3 1.6 1.3 1.6 7.5 1.6 1.0 0.6 0.9 0.6 1.7 0.6
5 263.0 16.1 354.3 43 98.8 73.1 263.5 19.7 173.2 0.7 81.4 70.2
1.6 2.0 1.7 2.5 8.5 2.1 1.1 0.6 1.0 0.7 2.0 0.6
6 262.9 15.6 353.3 1.5 88.4 74.2 266.1 19.7 175.6 1.6 81.0 70.2
1.2 1.7 1.2 1.8 6.6 1.8 0.9 0.6 0.8 0.6 15 0.6
7 262.7 20.1 354.4 4.4 96.0 69.2 266.4 19.8 176.0 1.3 82.4 70.1
14 2.2 15 2.4 6.6 2.3 0.9 0.5 0.8 0.6 1.6 0.5
180°
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Figure 11. Same as Fig. 9, but for FM data from the South American coast between 1976 and 2017 (40°S—5°S, 80°W—-60°W). Even though the region (b) has
a much larger extent then northern Chile example, the identified clusters are similar to those of northern Chile.

The distribution of rotation angles of inverted stress orientations
with respect to the stress orientation of the reference event indicate
a reduction of 40 per cent in uncertainties, while only 15 per cent
of FM data has been down-weighted to an extent that the data are
effectively removed from the data set. The removed/down-weighted
data show comparatively large residuals, while data in the bulk
remain unchanged. The data leverage shows that the removed data
have an above average influence on the model result. Due to the
removal of these high-leverage outlying data, the obtained stress
tensor orientations are more robust, that is, orientations are not
affected but uncertainties are reduced.

The appropriateness of the uncertainty estimates for both
weighted and unweighted STI are shown in Fig. 8. As found by
Hardebeck & Hauksson (2001a), the uncertainty estimates of STI
after Michael (1984) are too small for both weighted and unweighted
routines. However, the weighted STI underestimates uncertainties

to a lesser degree than the unweighted STI. The aforementioned
relative uncertainty reduction of 40 per cent is therefore larger for
when accounting for the different degrees of underestimation.

4 EXAMPLES

In this section, we present two case studies from South America.
The first example is from northern Chile where in 2014 the Iquique
earthquake occurred and the second example covers the entire west
coast of South America. The FM data are from the GCMT catalogue
(Dziewonski et al. 1981; Ekstrom et al. 2012) from 1976 to 2017.
FM clusters are identified with ACE and the probabilities of each
event are used as weights in the weighted STI. We invert for stress
tensor orientations with and without weights. For the STI and the
derivation of the weights we use declustered catalogues (Zaliapin
et al. 2008). Uncertainties are estimated by bootstrapping the data
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Figure 12. Subdivision of western South America for SATSI in regions 1-7
(red lines). Events in the map are used in both STI: All events shown have
either an ACE weight >0.5 or have a depth of <50 km. Colour saturation
corresponds to ACE weights for plate interface events (colour saturation is
equivalent to the average saturation of the two plate interface/reverse faulting
cluster in Fig. 11). Events in blue and white have a depth of <50km and
are used in the unweighted STI; events in blue and green are used in the
weighted STI. Green events have an ACE weight of >0.5 and a depth of
>50km. In the weighted inversion all events are included, but events with
weights below 0.5 are not shown in the figure. Principal stress orientations
for each region are shown on either side of the map for unweighted (left)
and weighted (right) STI. The S, orientations (yellow) fluctuate between
north and south and the right-hand column which is due to the usage of the
lower hemispheric projection; all S, orientations are almost identical with
near horizontal plunge and a north-south trend. Principal stress orientations
are given in Table 2.

10 000 times and, following Michael (1987), by randomly selecting
nodal planes as rupture and auxiliary planes, respectively.

4.1 Northern Chile

Seismicity in northern Chile is dominated by plate interface and
intraslab earthquakes. In the region considered here (26°S—17°S,
75°W—-65°W) plate interface activity is mostly confined to the upper
50km close to the coast, while most intraslab activity is below
that depth. Crustal activity to the east of the coast is associated
with orogenic processes. The catalogue contains 736 events after
declustering.

In the unweighted estimation of the stress tensor at the plate
interface, we only included events shallower than 50 km of the entire
region (174 events). Results (Fig. 10a) indicate that S| -direction is
westward, parallel to the movement orientation of the Nazca plate
with respect to the South American plate (Bird 2003), and dipping
with appr. 20°. Uncertainties are represented in a Kernel density
estimate with a von Mises-Fisher kernel.

For the weighted STI we apply ACE for the declustered GCMT
catalogue of northern Chile with 736 events without any additional a

priori information about the FM. Four clusters are identified (Fig. 9).
Two of each (for either nodal plane) are associated with normal
(intraslab) and reverse faulting (plate interface), respectively. The
unclassified events are mostly near the surface and are associated
with thrusting in the Andes. The weights are based on the probabil-
ities of the two clusters associated with plate interface activity. The
sum of the weights expressed as fractions is 19.4 per cent for plate
interface, 65.4 percent for intraslab and 15.2 per cent for unclas-
sified. With respect to the total number of FM (736), 19.4 per cent
is equivalent to 143 events which is comparable to the 174 events
considered in the unweighted STI.

The three principal stress orientations differ only by a rotation
angle of 3.9° between the unweighted and weighted STI. Differences
are more prominent in the plunge than in the trend. In all cases
uncertainties of the weighted STI estimates are reduced significantly
(Table 1).

4.2 Nazca plate

The second example covers the portion of the South American west
coast between 40°S and 5°S. The longitudinal extent includes all
major seismicity in the latitude range (85°W—65°W, Fig. 11b). The
catalogue of northern Chile in the first example is a subset of this
data set, thus similar results for normal and reverse faulting are
expected.

STI in this example is based on SATSI (eq. 23) and focuses on
plate interface activity with a maximum depth of 50 km. The region
is subdivided between —85° and —60° longitude into seven stripes
of 5° width between latitudes —40° and —5° (Fig. 12). SATSI is
performed without weighting and with ACE-based weights. The
dependency in eq. (23) is set in both cases to € = 0.2.

The catalogue for this region contains 1941 events and the set-up
for ACE is as in the previous example. Four clusters similar to those
found for northern Chile are identified: two for reverse and normal
faulting, respectively (Fig. 11). Remaining data are unclassified.
The clusters for normal and reverse faulting are similar in shape
and location to the clusters from northern Chile. This similarity
suggests that plate interface rupture processes are similar along the
west coast of South America. The number of events per event type
differs from northern Chile, as the sum of weights indicates 28.9
per cent as plate interface, 38 per cent as intraslab and 33.1 per cent
as unclassified. As in the case for northern Chile, only data with a
depth of less than 50 km are used in unweighted STI (827 events).
With 28.9 per cent of 1941 events weighted as plate interface results
in 560 events for the weighted STI.

In Fig. 12, inversion results are shown for each for the unweighted
(left-hand column) and weighted inversions (right-hand column).
Principal stress orientations are similar to each other, with S; ori-
ented westward, S, oriented northward (southward), and S5 oriented
downward and slightly eastward. S, orientations of the unweighted
inversion are more tilted than orientations derived from the weighted
inversion. All S, orientations are from the unweighted approach are
northward, while in the weighted case the orientation flips between
north and south, indicating that S, orientations are nearly horizontal
(Fig. 12, right-hand column).

Principal stress orientations with their uncertainties for both
SATSI inversions are shown in Fig. 13 (a, unweighted; b, weighted).
Individual solutions are shown by different shades of hue, with S; in
red/purple, S, in orange/green and S; in green/blue. The differences
of principal stress orientations for all regions of the weighted and
unweighted STI range between 4.7° and 10.8°. Trends and plunges
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Figure 13. Principal stress orientations with SATSI (a, unweighted; b, weighted) for the South American coast (Fig. 12). Principal stress orientations are all
over similar to those of Northern Chile (Fig. 10). The results of the unweighted STI not only show larger uncertainties per region (densities with same hue) to
the weighted STI, but also between regions principal stress orientations are more diverse than those obtained from the weighted STI.

and their respective uncertainties for all seven regions are sum-
marized in Table 2. In case of the weighted inversion (Fig. 13b),
uncertainties for each stress tensor are larger than the variance of
the principal stress orientations for all regions, that is, the results for
each region are consistent with each other. In the unweighted STI,
principal stress orientations of all regions are more scattered than
in the weighted case. This difference of scattering is best illustrated
in the orientations of S;: While all bins in the weighted estimate
have near identical Ss-orientations (Fig. 13b, blue/green region in
the centre), S;-orientations of the unweighted estimates are diverse
to a level that they are mostly separate even with their uncertain-
ties (Table 2). The orientation of S} of the unweighted inversion
follows a horseshoe pattern (Fig. 13a, left) while in the weighted
STI orientations are at a constant plunge. This horseshoe pattern is
most likely caused by outlying data, as these are not identically dis-
tributed for each region due to the high variability in the occurrence
of such more rare events. The rarity of these events is compensated
in the STI by the increased leverage.

5 DISCUSSION AND CONCLUSION

The compilation of an FM catalogue for STI that strictly follows
the assumptions of the stress inversion routine cannot be achieved
by spatial and deterministic selection alone. We demonstrated that
STI can be improved by applying data weighting based on ACE.
Since the weights are not fully dependent of the event’s hypocentre,
they add an additional constraint to the otherwise purely spatially
constrained extent of the data for the final catalogue. Furthermore,
the weights are derived in a data-driven way, thus reducing effects
from expert elicitation in the case of selecting spatial bins. Due to
the complexity of the FM distribution in the Earth, it is necessary
to identify and remove/down-weight outliers if FM data originates
from several stress tensors. The weighting not only improves the
stress tensor solutions but also reduces uncertainties.

Outliers increase inadvertently data diversity, which has been
shown by Hardebeck & Hauksson (2001b) and is required for less
biased stress tensor estimates. Outliers can originate either from

different stress tensors or are extreme cases of the dominant stress
tensor. However, the former case needs to be avoided from a physical
point of view, the latter because these extreme value data influence
the outcome of the inversion more than the close to average data.
The fewer data are used in an inversion, the larger the range of
leverage. Under the assumption that angles between FM follow a
DC rotational Cauchy distribution, FM outliers can occur at higher
frequencies than expected from a normal distribution. A clear sepa-
ration of both cases is not possible when two different stress tensors
are in proximity to each other. Therefore, the reasons for the differ-
ences of stress orientations from weighted and unweighted STI in
the examples cannot be resolved as well.

Data selection in unweighted STI is highly dependent on the
hypocentre location. However, the hypocentres are not always a
good proxy whether events belong to a single stress tensor or not.
Data weighting based on the distribution of the FM angles, as given
by ACE, allows data selection independent of the hypocentres. The
data selection is not only subject to the hypocentres but also to the
properties of the focal mechanisms. Thus, STI is less sensitive to
the spatial binning.

A major advantage of data weights is their implementation into
any of the existing methods, as has been exemplified by the seam-
less incorporation of weights into the STI routine of Michael (1984)
and Hardebeck & Michael (2006). The underlying routines remain
unchanged and results have been shown to be consistent. How-
ever, uncertainties are considerably reduced by discarding only
a small portion of the data set. ACE can also be used to deter-
mine whether data weighting is necessary, depending on the iden-
tified clusters. If the identified clusters are associated with mul-
tiple stress tensors (e.g. at a plate interface or in a subducting
slab), then weighting is recommended. Furthermore, other types
of data weighting can be added by expanding the weight matrix,
for example, by incorporating data uncertainties as in Armijo ef al.
(1982).

Data weighting can also be incorporated into more advanced
methodologies for STI (e.g. Martinez-Garzon et al. 2016). As such,
data-driven methods not only allow a refined analysis of the stress
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field but also open up other fields in stress field research, for exam-
ple, stress transients. Here, the reduction of uncertainties of stress
tensor estimates is a necessary prerequisite for investigation of the
spatio-temporal variability of the stress field.
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